0=16t^2+50t+15

Simple and best practice solution for 0=16t^2+50t+15 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=16t^2+50t+15 equation:



0=16t^2+50t+15
We move all terms to the left:
0-(16t^2+50t+15)=0
We add all the numbers together, and all the variables
-(16t^2+50t+15)=0
We get rid of parentheses
-16t^2-50t-15=0
a = -16; b = -50; c = -15;
Δ = b2-4ac
Δ = -502-4·(-16)·(-15)
Δ = 1540
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1540}=\sqrt{4*385}=\sqrt{4}*\sqrt{385}=2\sqrt{385}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-2\sqrt{385}}{2*-16}=\frac{50-2\sqrt{385}}{-32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+2\sqrt{385}}{2*-16}=\frac{50+2\sqrt{385}}{-32} $

See similar equations:

| 0=4x^2-16x+50 | | 3(a-2/3)=3/4a+2•1/4 | | 10-5c=-10-c | | 15x-24=-79 | | -11=5-4r | | 8+3v=-19 | | 4(x-9)=4(x-5) | | 5(10−y)=4(2y+3) | | (1+x)^3=4.82 | | 3y/4+6=9 | | 13x+25=-1 | | 3y4+6=9 | | X^2-28x=-39 | | 03x+6.3=-14.4 | | 12y/18+5=7 | | (1+x/3)^3=1.276 | | X+100+100=x+300 | | X^2+28x=-39 | | 9/(v-3)=6/5 | | -8x+24=-8 | | J^2+12j=-25 | | 10x+6x-6x=60 | | X^2+144=x^2 | | (8x)-1=11 | | -2h+11=17 | | 15y+8+.2y+.8y=24 | | X+.45x=696 | | y=-4.8/5(72)+80.9 | | P^2-16p+3=0 | | 8x²-512x+2048=0 | | (1+x/4)4=22.5 | | 12a-6=-10 |

Equations solver categories